# Detailed table of contentsΒΆ

- An overview of Gambit
- The graphical interface
- Command-line tools
**gambit-enumpure**: Enumerate pure-strategy equilibria of a game**gambit-enumpoly**: Compute equilibria of a game using polynomial systems of equations**gambit-enummixed**: Enumerate equilibria in a two-player game**gambit-gnm**: Compute Nash equilibria in a strategic game using a global Newton method**gambit-ipa**: Compute Nash equilibria in a strategic game using iterated polymatrix approximation**gambit-lcp**: Compute equilibria in a two-player game via linear complementarity**gambit-lp**: Compute equilibria in a two-player constant-sum game via linear programming**gambit-liap**: Compute Nash equilibria using function minimization**gambit-simpdiv**: Compute equilibria via simplicial subdivision**gambit-logit**: Compute quantal response equilbria**gambit-convert**: Convert games among various representations

- Python interface to Gambit library
- Sample games
- For contributors: Ideas and suggestions for Gambit-related projects
- Refactor and update game representation library
- Implementing algorithms for finding equilibria in games
- Enumerating all equilibria of a two-player bimatrix game using the EEE algorithm
- Improve integration and testing of Gametracer
- Interface with lrslib
- Finding equilibria reachable by Lemke’s algorithm with varying “covering vectors”
- Computing the index of an equilibrium component
- Enumerating all equilibria of a two-player game tree
- Solving for equilibria using polynomial systems of equations
- Implement Herings-Peeters homotopy algorithm to compute Nash equilibria

- For developers: Building Gambit from source
- Game representation formats
- Bibliography